  # Nakagami Distribution (Nakagami-m): Definition

Probability Distributions > Nakagami Distribution

## What is the Nakagami Distribution?

The Nakagami distribution (also called the Nakagami-m or Nakagami-μ distribution) is a fairly new probability distribution, first appearing in 1960. It is a generalized way to model small scale fading for dense signal scatters and it one of the most common distributions for modeling right-skewed, positive data sets. Real world applications include modeling wireless signal and radio wave propagation, characterizing breast tumors using ultrasound imaging and in meteorology.

The two parameters combined determine the height, steepness and concavity of the probability density curve. The distribution is only valid on the interval (0,∞). In other words, if x ≤ 0, then the probability is zero.

The tails are usually thin, meaning that the tail decreases exponentially for large x-values.

## Relation to Other Distributions

The distribution is related the the gamma distribution: if x has shape parameter μ and scale parameter ω, then x2 has a gamma distribution with shape parameter μ and scale parameter ω/μ.

## Nakagami-q Distribution / Hoyt Distribution

If the shape parameter is restricted to the interval q=μ; 0 > q > 1, the distribution is called Nakagami-q, also known as the Hoyt distribution or Nakagami-Hoyt distribution. Like the Nakagami-w, the scale parameter must be positive and the tails are relatively thin. Close to the mean, the Nakagami distribution is a good approximation to the Rician distribution. However, towards the tails they differ significantly.

Reference:
Nakagami, M. (1960) “The m-Distribution, a general formula of intensity of rapid fading”. In William C. Hoffman, editor, Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held June 18–20, 1958, pp 3-36. Pergamon Press.

------------------------------------------------------------------------------

Need help with a homework or test question? With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!

Statistical concepts explained visually - Includes many concepts such as sample size, hypothesis tests, or logistic regression, explained by Stephanie Glen, founder of StatisticsHowTo.