Statistics How To

Pooled Sample Standard Error: How to Calculate it

Probability and Statistics > Basic Statistics > Pooled Sample Standard Error

Watch the video or read the steps below:

Pooled Sample Standard Error: Overview

pooled sample standard error

A standard error tells you how spread out your data is from a central point (the mean).

The standard error of a sample is another name for the standard deviation of a sample (this is also one of the AP Statistics formulas).
There’s a slight difference between standard deviation and pooled sample standard error:

  • When we are talking about a population, we talk about standard deviations.
  • When we talk about a sample we call it a standard error.

For calculations, you don’t have to worry about that difference: Both are calculated using the same formulas.
A pooled standard error accounts for two sample variances and assumes that both of the variances from the two samples are equal. It’s called a “pooled” standard error because you’re pooling the data from both samples into one. The formula for the pooled sample standard error is:

SEpooled = Sp √ (1/n1 + 1/n2)

Pooled Sample Standard Error: Steps

Sample problem: Calculate the pooled sample standard error for the following data from two samples:
Sample1 :n=25, s = 6.
Sample2 :n=25, s = 6.

Step 1: Insert your numbers into the formula. Use your variance (s) for sp (you can do this because both variances are the same:
SEp = 6 √ (1/25 + 1/25)

Step 2: Solve:
6 √ (1/25 + 1/25) ≈ 1.697.
The pooled sample standard error is about 1.697.

That’s it!

Check out our Youtube channel for Statistics help and tips!


Confused and have questions? Head over to Chegg and use code “CS5OFFBTS18” (exp. 11/30/2018) to get $5 off your first month of Chegg Study, so you can understand any concept by asking a subject expert and getting an in-depth explanation online 24/7.

Comments? Need to post a correction? Please post a comment on our Facebook page.

Check out our updated Privacy policy and Cookie Policy