Statistics How To

Erlang Distribution: Definition, Examples

Probability Distributions > Erlang Distribution

What is the Erlang Distribution?

The Erlang distribution (sometimes called the Erlang-k distribution) was developed by A.K. Erlang to find the number of phone calls which can be made simultaneously to switching station operators. Erlang was a telecommunications engineer for the Copehagen Telephone Company; his formulas for loss and waiting time were used by many telephone companies, including the British Post Office. Erlang’s distribution has since been expanded for use in queuing theory, the mathematical study of waiting in lines. It is also used in stochastic processes and in mathematical biology.

The Erlang distribution is a specific case of the Gamma distribution. It is defined by two parameters, k and &u;, where:

  • k is the shape parameter. This must be a positive integer (an integer is a whole number without a fractional part). In the Gamma distribution, k can be any real number, including fractions.
  • μ is the scale parameter. Must be a positive real number (a real number is any number found on the number line, including fractions).

erlang distribution

Erlang distribution showing various possible shape and scale parameters. Image: IkamusumeFan|Wikimedia Commons.




The probability distribution function of the Erlang distribution is:
erlang pdf


The factorial(!) in the denominator is the reason why the distribution is only defined for positive numbers. An equivalent form of the pdf for this distribution includes λ, a measure of rate, which is related to μ in the following way:
μ = 1/λ.
λ represents the number of items or calls expected in a given amount of time.

Statistics of the Erlang Distribution

Relationship to Other Distributions

------------------------------------------------------------------------------

Confused and have questions? Head over to Chegg and use code “CS5OFFBTS18” (exp. 11/30/2018) to get $5 off your first month of Chegg Study, so you can understand any concept by asking a subject expert and getting an in-depth explanation online 24/7.

Comments? Need to post a correction? Please post a comment on our Facebook page.

Check out our updated Privacy policy and Cookie Policy